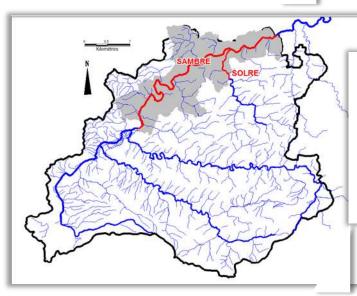
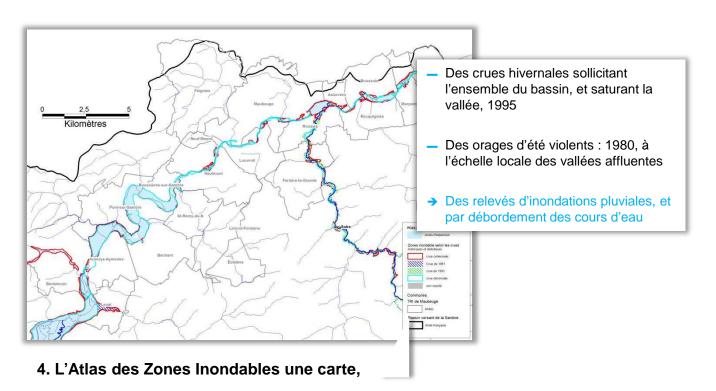

Phase 1 Analyse de la documentation existante et compréhension du fonctionnement du bassin versant de la Sambre


- Une forte dissymétrie des pentes:
 - o rive droite <1 %,
 - o rive gauche 4 à 5%
- Altitude moyenne en fond de vallée
 - + 125 m NGF
- → Pente générale du terrain vers le Nord-ouest et la vallée de l'Escaut

1. Une topographie dissymétrique....

- Une dissymétrie géologique:
 - rive droite « dévonienne » peu perméable
 - rive gauche « crétacée » moyennement perméable
- → Une fracturation orientée NE, que suit la Sambre
- → Un comportement ruisselant sans nappe majeure

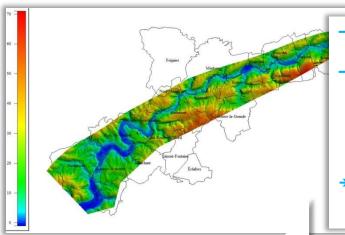
2. ...que la géologie...


- Réseau hydrographique dissymétrique
- Sambre canalisée à partir de Landrecies, et de direction d'écoulement vers le nord-est.
- Les affluents descendent la pénéplaine dévonienne selon un trajet nord-sud
- → La Sambre a une faible pente
- → La Sambre longe son versant RG

3. ...et le réseau hydrographique confirment.

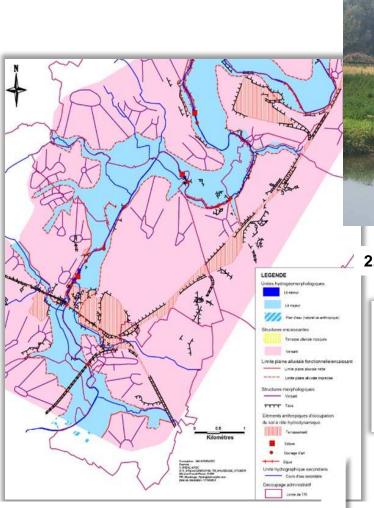
Phase 1 Analyse de la documentation existante et compréhension du fonctionnement du bassin versant de la Sambre

Cours d'eau	Date	Station	Cote (m)	Temps de retour (an)	Dommage
Sambre	03/1956	Maubeuge	3.85	30	Débordement grave
Sambre	02/1961	Maubeuge	4.30	75 à 100	Plus hautes eaux connues
Sambre	07/1980	Maubeuge	3.49	20	Débordement grave
Sambre	11/1984	Maubeuge	2.28		Débordement moyen
Sambre	23/12/1993	Maubeuge	3.95	30	Débordement grave
Sambre	1 et 2/1995	Maubeuge	3.49	20	Débordement grave
Solre	07/1980	Ferrière-la-Grande	2.53	supérieure à 20	Plus hautes eaux connues
Solre	20/12/1993	Ferrière-la-Grande	1.92	20	
Solre	30/01/1995	Ferrière-la-Grande	1.00	2 à 5	


5. des observations de crue en cote

Période de retour	Débit (m³/s)	
10 ans	120	
20 ans	140	
50 ans	160	
100 ans	180	

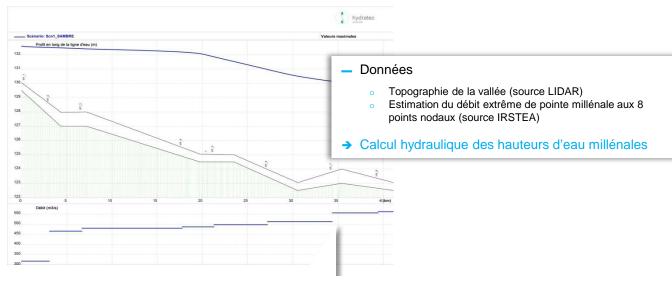
5. Et des estimations de débits sur la Sambre



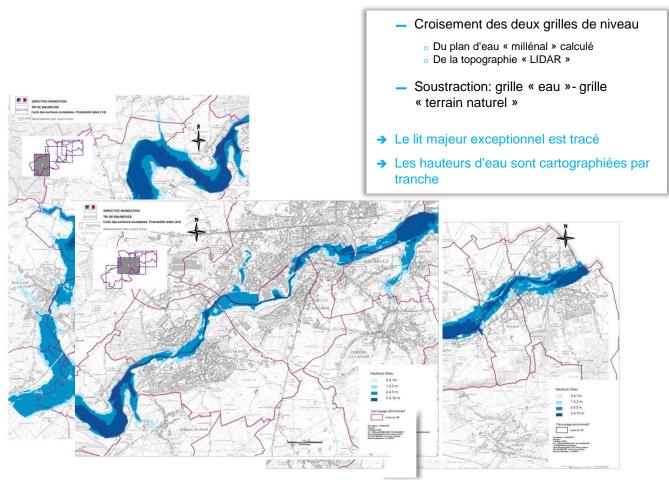
Phase 2 Cartographie hydrogéomorphologique du TRI

- Méthode mise au point par des experts du ministère de l'Équipement en 1980
- Analyse basée sur les observations suivantes:
 - Structures des vallées et formes fluviales
 - La sédimentologie
 - L'occupation des sols (anthropique ou naturelle)
- → Croisement de données cartographiques: modèle numérique de terrain, cartes géologiques, carte scan 25 photographies, et de visites de terrain

1. Traitement du modèle numérique de terrain....



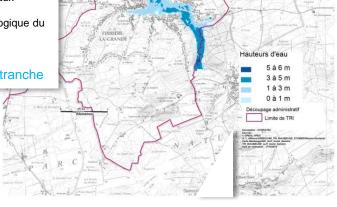
- 2. ... et analyse des formes visibles
 - Absence de terrasses alluviales
 - Sections de vallées en « auge »
 - → Le lit majeur exceptionnel ne peut être déterminé
 - → L'analyse géomorphologique ne peut permettre de trancher précisément.



Phase 3 Territoire à Risque d'Inondation extrême Sambre

1. Calcul de la ligne d'eau millénale (équations complètes de l'hydraulique)

2. Carte de l'enveloppe d'inondation extrême



Phase 3 Territoire à Risque d'Inondation extrême Solre

Analyse de la pertinence de l'approche

- o Comparaison avec l'Atlas des Zones Inondables,
- Identification des secteurs influencés par le ruissellement et les inondations liées au refoulement des réseaux pluviaux
- Comparaison avec la détermination géomorphologique du lit majeur
- → Le lit majeur exceptionnel est tracé
- → Les hauteurs d'eau sont cartographiées par tranche

2. Carte de l'enveloppe d'inondation extrême